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A treatment will be given of the problem of the elastic equilibrium of a
half-plane with a circular orifice under the actlion of an arbitrary external
loading on the circular and rectilinear parts of the boundary. The solution
of the problem 1s given in a system of bipolar coordlnates in the form of a
stress function which is a generalizatlion of the function obtained by Jeffery
[1] for an eccentric ring.

1. The most general solution of the plane problem of elasticity for a
region bounded by two circles, in particular for a half-plane with a circu-
lar orifice, was given by Jeffery [1]. This solution has been derived for
the case when the boundaries of the region are subjected to arbitrary exter-
nal forces represented by Fourler serles and has been given in bipolar coor-
dinates by means of a stress function which, by virtue of the required sin-
gle-valuedness of the displacements, has a form [ 2]

gP = G(cosha — cos B) B -1 Byfcosha — cos B) a -+ F (B sin B + vasinha) -

+ H (Bsisha —va sin B) + D) [f,® (@) cos nB + £,* (@)sin nB} (1.1)
n=1
where (1.2)
foS (@) = A,Scosh(n + 1) @ + B, Ccosh(n— 1) @ -+ C,Ssinh(n + 1) @ + D, Csinh(n — 1) a
_ (n>2)
fo" (@) = A,%coh(n + 1) a + B, *cosn(n — 1) a + C,*sish(n + 1) a + D, *sinh(n — 1) a
(n=>2)
£€ (@) = A °cosn2a -+ B;® 4 C, sinh2a, £ (@) = A %cosh2a + C,*sinh2a

However, 1n spite of a large number of particular problems solved by
Jeffery's method, the questlion of the convergence of this solution 1n the
general case remains open. It is not diffiecult to convince oneself that,
foria half-plane with an orifice, solution (1.1) can lead to divergent
series.

In fact, we will treat the simplest case of the equilibrium of a half-
plane with an orifice, when the rectilinear boundary i1s free of stresses
and the circular boundary 1s subjected to an arbitrary not self-equilibra-
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ting system of forces (equilibration- takes place at infinity). Then the

Jeffery's method for y,¢ and f,* on the rectilinear boundary(c = 0) leads
to the following Expressions

’

nf,” (0) = — nBy + nf,%(0), nf,¥ (0) = 2H {1.3)
n (n? — 1) fnc (0) == — 2nF, n(n?2— 1) fn”' 0) = — 2G
where B, ,4,F and ¢ can be determined in terms of the resultant of the forces

acting on the circular boundary, and, in general, they are non-zero.

Thus, the necessary conditlons for the convergence and two-fold differ-
entiability (for the determination of the stresses) of series (1.1), namely

nf, S (0) >0, n(n®—1)f°(0)>0, nf,¥ (=0, n(n®—1)f*0)—0
when n — 00 (1.4)
are not fulfilled and, consequently, solution (1.1) is inapplicable in this
case,

We mention without proof that, for the eccentric ring (not having infi-
nitely remoted points), conditions (1.4) are fulfilled on the whole always
when the external forces are in equllibrium.

Below, for the case of half-plane with an orifice, we give a solution of
the plane problem of the theory of elasticity which is suitable for a wider
range of problems than Jeffery's solution.

2. We will make use of a system of bipolar coordinates which can be
obtained from Cartesian coordinates by means of the transformation [ 2]

z = a sin B / {cosha — cos B), y = asinha / (cosha — cos )
The region under consideration is bounded by the line a = O and the cir-
cle a = y.

Let the boundaries of the region be subjected to the external forces re-
presented in the form of Fourier series

(2.1)
0
at,y = ay’ + ) (a,cosnB + b,  sin np)
¥
n=1
v < for a = 17
A o
ac, = ¢’ -+ 2 (¢, cos nB 4 d' sin nf)
n=1
© [ee]
4T, = ag” + 2 (a,,” cos n + b." sin nB)
n=1
Fig. 1 for @ =0

je o]
a0, = ¢," + 2 (c,” cos nB -+ d,” sin nB)
n=1
Beside the conditions of representability by means of Fouriler serles,
other necessary restrictions will become evident in the following.

The components of the resultant force and moment of the external forces
applied to the boundary a = y can be determined by well~known Formulas
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The components of the resultant of the external forces applied to the
boundary o = O can also be unbounded.

Thus the problem leads to the determination of a biharmonic stress func-
tion, which in the considered region satisfies conditions of single-valuedness
of the displacements and boundary conditions (2.1)

3. We willl take the stress function in the form

g® = G (coshr — cos B) B -+ B, kosbx — cos B) @ 4+ F (B sin B -+ vasinha) +
4- H (Bsinha — va sin B)4 (Kcora — K cos B -+ Lsinha +T sin ) In goshat — cos B) —

— Lasinha — Tasin B 4+ (Rsinf + Ucosha — U c0s B -~ WsinhG) tan- Finc—isp +
P . o0
+w;;’;-ni_a-§——§£ + Z [4,° (a) cos nB + f,* (a) sin nB} ( = T—FP'_ZF) (3.9)

n=1

where f,°(a) and 7,*(a) can be determined by Formulas (1.2); v 1s a quantity
depending on the elastic constants.

This function differs from Jeffery's stress function (1.1) by the pre-
sence of terms which are singular at the point o = g = O, at infinity, and
which admit the possibllity that the external forces at infinity are self-
equilibrating. The non-singular terms Lo sinh a and Ta sin B are ngcessary
for the fulfillment of the conditlon of single-valuedness of the dlsplace-
ments. We consider the solution in more detall when the loading 1s symmet-
ric.

In this case, the stress function will only contain terms which are even
functions of B

gD = B, posha — cos B) a + F (B sin B + vasaha) — Lasinha + (Kcosha — K cosB +

sin |
+Lsinha) In (cosh @ — cos B) + R sin B tan-t —',‘;""—13—— + 2 fn° (a) cos nB 3.2)
e* —cos B o
The boundary condltlons become
[ o] [e ]
at,g = D b, sinnB,ao, = ¢’ + D) ¢’ cos nB for @ = ¢ (3.3)
n=1 n=1
[e o] (o]
at o= X\ b"sinnB, a0, = ¢" + D) ¢, cosnB for a =0
n=1 n=1

By determining the stresses on the boundaries of the reglon (%.2) deve-
loping them in Fourier series, and equating them to Expressions 3.33, we
obtaln four systems of Equations
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— 26,5 (1) + 2£,° (¥)coshy — 2By cosny — 2L coshy + 4Lsint® ¢~ — Rcoshy -+
-+ 2Rsinh® Ye™Y — 2K sinhy = 2b)’

— 315 (M + 2:2,% (1) comt — /1, (1) + By + 4Lsink2ye™? + é_ R+ 2 Reintre 2 = 2b,’
— (1) 7 (@) + 20, (V)oosty — (0 — 1) 1,7, (1) |- 4Lsintd ye Y +-
| 2Rsint® 1Y = 25" (n>3) 3.4

2/, (1) — Bosint2y — 3F,— 2Fwainty + 4Laink®r — 4L sinhy coshy -+ % R—
— RsinhYeosh 7 + Rsink® 1 — Kcosh2y = 2¢,’
2-3 £2° (1) — 2f," (Daint ¥ + 2Bysinny + 4Fcoshy + 4Laiat? 1e™ — 2Lsinhy —
— HReosh 7 — Re™™ + 2Ruin® 1™ + 2K coshy = 2¢,’
341" (1) — 2'3 £3° (Moo — 2/, ()aishy — F -+ 4Luiatt 7e27 + R +
+ 2 Foint? e ® — K — 2¢/
a4+ 1) (r+2)f (=20 —1)f° Voot + (n— 1) (n — 2) f, () —
— 2f,% (Ysinhy + 4Laint® 7e™™ + 2Roimt 1e ™™ = 2¢, (n>3 (3.5

— 2 () + 21, (0) — 2By — R — 2L = 2,
— 315" (0) + 2:2 £, () — /h” () + By + % R = 2b°

— DGO+ 20,50 — (= O £SO =2, (>3 (9

2/,° (0) — 3F + %R — K = 2¢"

2:3 /,°(0) + 4F — 2R + 2K = 2¢,"
34£°0)—23£((0).—F+YaR— K = 2¢” (3.7
DO+ 0—20— DO+ (r— 10 (n—2) 1, O =2," (r>3)

These systems can easily be solved by means of the method set forth in
[1]. Resulting solutions are

(3.8)
nf,& (v) = _1__[/1“ (1) — By, —2Le™™ — B o8 _ oK sanyeT— 2 ngb re=p Jen
n sinh 0 2 T p ¢P Je -+
p==1
_._1__ (44 —2Y : R —
+amy |7 hY ()t By o+ 2Le™ — 2Lsinh Yooy — 2 Lnsiatf 7 4 5 €7 —
n—1
— Rnsiok? ¥ 4- 2K sishye™ + 2 D) bp'e'“] e™ (12
p=1

cs cr lt
nf,& (0) = [fl ©) — By —2L— 5 —2 bp"ln+ 2L 423 pb  (n>2)
p=1 - p=1
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1
n 0t = ) £, () = g | A (0 — 20— B o ogumner 5, —
n—1
. ’ - cosh Y ) _ R
2 2 P e G| 1+ 2L 4 Ry
T n—}
4 2Ksiahye™ + By +2 3 bp'e'm] Y +si;£... [—- Fq D Py +opeer ]e"* +
p== i p=1
1 . R
+sinhy [2L - R] n% "™ 4 m;[h‘" (1) — 2Le™™ — Re™™ + 5 ¢ — 2K sinnye” —
-]
# R
_ 36_22 bpem'] ne="Y +;:‘;‘:%7r[f‘c' (1) — 2Le™* — > e~ 2K conye’ — By —
n—1 P= . LT
-2 bp'ePY] e p u.;:.? [F —2Lainiy 4+ 3 pby — ) em., Y (n>2)
=1 =1 N

n—1}
n(nt—1)1,°(0) = —2nF 4+ nR —2K +2 )| (n — p) pe,” n>2)
=<1

3
H® (1) = &' + BysinYcosnY + 5 F + F vsiok? 1 + 2L sishye™ —

-

3 R »
— ",;"R-i— 5 sinhYe Y»{-—z‘chsh.?:]f

3 3 1
WO =6 +5F— 53R+ 5K

We will consider Expression for ny,“(y) in detail. It can be rewritten
in the form

€0
4 i 4 — R o . - Lo
nfy (1) zdm[ 1 (1) — By — 2Le ”——i- e _ 2K sinhye ”«-—22 b ”"} Y+
p=1
1 . ) R _
+ s?-h_y{["“ £ (1) + By + 2Le”Y — 2Lsinh Yeoshy — 2Lnsint? 7 4 Se 2¢ __
n—3 o0
— Rrum 1 + 2Kte” +2 ) b,/ [ 42 Db Ph (a2
p=i p=n

The necessary condition that this Expression tends to zero means that the
coefficient of e"Y must vanilsh

o
H” () =By — 2L — -%- Re™ — 2Ksinnye™¥ —2 D) be P =0
p=1

Analogically, from the requirements nf,¢(0} - O and n{n® — 1}5,° - 0
follows the necessity of satisfying following conditions
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o2}
£ () — By — 2Le™ — L Re™ — 2Kuinnye ™ — 2 D b/e P =0
p=1

oo
WO —Be—2L— L R—2 N =0

p==1
oG oo
L+ ) pb, =0, Fe Y ply +e)) e =0 (3.9)
p=1 =1
oo [}
2F — R —2 zpcp”: , K — Ep“cp”:()
p=1 P==

Last four conditions in {3.9) determine the constants L, R, F and X.

First two Equatlons in (3.9) together with last Equations in (3.8} make
it possible to determine B, and the coefficlents 4,° Bf and C,°for £, ° {a) in
Expression (1.2) . Remaining Equations (3.8) are sufficient tor the deter-
mination of the constants 4,°, B,°, (,° and D, °.

The problem with asymmetric loading of the region boundaries can be solved
in complete analogy. In this case, for the constant coefficients of the
stress function we obtain

oo o<
— 1 ,-PY 7 7 —F
G = anilﬁ']' Eai"‘e +¢°‘h‘r2p(ap wd‘{;)e;\’
p=0 =1
[ee]
H = — Z p (ap’ — dp’) e by
pe=1
2 - o s
V=~ Da, e 4 2eothy D) pla, —d,) e T2 D pA (3.40)
p=0 p==1 p=1
o o0 (=] oo
— I - " _ .
W= 22 play’ —dy)e 2 ZP%"; P = 4p T””ZPdp
p=1 pe=) p==0 p=1

Expressions (3.9) and (3.10) make 1t possible to find the restrictlons
imposed on the external loading by the convergence condition; the Fourler
coefficlents of the loading on the rectilinear boundary must satisfy the
requirement that the following serles converge

, Y ”
2 pay”, Dby D X,
There are no additional restrictions on the circular boundary.

Thus, all coefficlents of the stress function {3.2) can be determined.
It should be noted that the fulfillment of the neccessary conditlons {3.9)
will not be sufficient for convergence of the obtained series. As suffici-
ent conditions 1t can be shown the convergence conditlon of the seriles

2 nf" (1), 2 nfnc' (0); 2 n (n?2 — 1) £, (1, 2 n (n* — 1) £,° (0)

however, it would appear that one could find weaker sufficient conditions.

4, As an example, we treat the half-plane with a circular orifice (Fig.1)
under the action of loading distributed along the contour of the orifice
according to the law

Qsinhycoshy cos § — 1
X coshy — cOS B

a0, = peos @ = at,s =0
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The rectlilinear boundary 1s free from loauimy. Then

cn’=b'=d'.—_—-a'.—=b'=c'=d"=0, co’.—z_:t_gaudﬁ— Q::"T —Y

0
€, = _i. % ag, cos nf df == %Q“T"h,_l' e (n>1)
0
By formulas {3.9) we obtain

L:—:K:O, F:_g‘ =._..Q_.
2n n

?irsg two Equations (3.9}, together with Equations (3.8),glve with regard
tu (1.2

A %cosh 2y - B,® 4- C,°sinh27 — By sinhTcosh 7 = % (vsinh? y — ginh 1e™Y)

24, sinh 27 + 20, coh2T — By = 2% ¥, ACHBE=0, 20°—B,= _2.%

A,Scoi(n -+ 1) T + B,Ccont(n — 1) 7 + C, sinb(n + 1) 7 + D,Csab{n — 1) 1 = 0
(n + 1) ASsion(n + 1) T+ (0 — ) B,Csian(n — 1) 7 + (1 + 1) C, comm(n + 1) T 4
+ (n— 1) D, Ccomt(n — 1) ¥ = — TQ.me"f”

4,5+ B,° =0, (r+DC+ (n—1)D, =0

Solving these Equations and substituting the found values into (3.2}, we
obtain final Expression for the stress function

b = Q (2°o!h’7 ~ 2¢oth T — ¥ coth ) (@eosha — a cos B)+ (B sin B -+ vasinha) +

+ -g-sinB m-n-—ﬂ"—gs—ﬁ —9—-(1 4+ — 2 coth T)cosh2a cos B +

-+ Z% (—1—v +2cotny)cosB + Z?_‘-(Zcom’y—i- 4 — 2coth T — ¥ coth T)sinh2acos B +

+ @ sinhY 2\' sinh Y sinhnQ sinh(Y — Q) — 7 sinhY sinh@sinhn (T — a)

~7Y,
cosnfB
sinh® ny — nlsing® ¥

=B
Fig.2 shows the nature of the dependence of the stress ag at point 4
1

(Fig.1) on the position of the orifice relative to the rectllinear boundary
of the half-plane.
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